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Abstract. The paper is devoted to studying the lower semicontinuity of vector-valued
mappings. The main object under consideration is the lower limit. We first introduce a
new definition of an adequate concept of lower and upper level sets and establish some
of their topological and geometrical properties. A characterization of semicontinuity for
vector-valued mappings is thereafter presented. Then, we define a concept of vector lower
limit, proving its lower semicontinuity, and furnishing in this way a concept of lower semi-
continuous regularization for mappings taking their values in a complete lattice. The results
obtained in the present work subsume the standard ones when the target space is finite
dimensional. In particular, we recapture the scalar case with a new flexible proof. In addi-
tion, extensions of usual operations of lower and upper limits for vector-valued mappings
are explored. The main result is finally applied to obtain a continuous D.C. decomposition
of continuous D.C. mappings.
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1. Introduction

The concept of lower semicontinuity introduced for scalar functions by
R. Baire has been recognized as a fundamental tool in different areas of
mathematical analysis. It has been used in different contexts and in partic-
ular by D. Hilbert and L. Tonelli in the calculus of variations. The rapid
development of optimization theory, in particular Pareto optimization, has
made evident the necessity of extending this concept to vector-valued map-
pings. This has motivated a quite number of mathematicians to investigate
this topic. The first attention in this direction goes back to Théra [24],
Gierz et al. [11], Penot and Théra [19], Gerrits [10], Holwerda [12], Luc
[14], Borwein and Théra [4], Combari et al. [6]. We refer also to the recent
contributions by Akian [1] and Akian and Singer [2].
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A basic fact in real analysis is that every real-valued function f admits
a lower semicontinuous regularization, l.s.c regularization for short, defined
by means of the lower limit of f :

f̄ (x) := lim inf
y→x

f (y) . (1.1)

A very natural and challenging question is, therefore, to determine a con-
cept of l.s.c regularization for vector-valued mappings. It seems that, since
the contribution of Théra [24], in which he provided some types of l.s.c
regularizations for mappings with values in order complete Daniell spaces
and lattices Daniell spaces, a little bit of attention has been focused on
the topic. Therefore, there is still a need to make some advances in this
direction in the general setting of mappings with values in partially ordered
spaces not necessarily Daniell.

The main scope of this paper is then to define an appropriate l.s.c reg-
ularization for mappings with values in a complete Banach lattice. Thus,
after defining a suitable lower limit, our efforts will mostly be devoted in
proving its semicontinuity.

Inspired by the ideas of Penot and Théra [19] and motivated by Combari
et al. [6], we introduce a concept of lower and upper “level” sets. We first
study these sets, show that they own nice properties, both topological and
geometrical, and establish the link between them and semicontinuity. Then,
we succeed in defining the concept of lower limit for a vector-valued mapping
f at a point x in its domain. We will use the notation v − lim inf y→x f (y)

rather than the standard one lim inf y→x f (y) in order to make clear that we
are in the framework of vector-valued mappings.

We now outline the plan of the remaining contents of the work, which
we organize in nine sections. Section 2 includes the notations and most
necessary definitions used later. Section 3 introduces adequate lower and
upper level sets which are illustrated by some examples. The fourth section
deals with characterizations of semicontinuity for vector-valued mappings.
Section 5 presents a study of some of the topological and geometrical
properties of the lower level set. In Section 6, we reach our goal by prov-
ing that the vector lower limit we consider defines a l.s.c regularization for
a given vector-valued map. We begin with Hilbert-valued maps and then
consider Banach lattice-valued ones. In Section 7 we check that our contri-
bution can be viewed as an extension of standard results. In particular, we
recapture the scalar case with a more flexible proof. In Section 8, we extend
the usual operations of estimation of lower and upper limits of the sum
of two vector-valued mappings. Section 9 aims to apply the main result to
obtain a continuous decomposition for D.C.-mappings in the vector case,
extending in this way some previous results in the literature.
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2. Notations and Definitions

Throughout this paper, E and F are real-vector topological spaces. For a
subset S in E or F, IntS and clS denote the interior and the closure of S,
respectively. Let C ⊂F be a closed and convex cone, which is supposed to
be pointed, that is C ∩−C ={0}, and with nonempty interior. The cone C

defines a partial order on F denoted by �c and defined by

y1 �c y2 ⇔y2 ∈y1 +C. (2.1)

We also write y1 �c y2 whenever y2 −y1 /∈C. The positive polar cone C∗
+ of

F is defined by

C∗
+ ={

y∗ ∈F ∗ :
〈
y∗, y

〉
�0 for all y ∈C

}
, (2.2)

where F ∗ is the continuous dual of F and 〈., .〉 the corresponding duality
pairing. The set C0 used in the sequel is defined by

C0 :={w ∈C : ξ(w)>0, ∀ ξ ∈C∗
+\{0}}.

Remark 2.1. Notice that we have Int C ⊂C0, we refer for instance to [17].

F • will stand for F ∪{+∞}, where +∞ denotes the greatest element of
F with respect to the order �c. We will write x <c y, for x, y ∈E, if y −x ∈
Int C. The order between subsets in F is defined as follows:

DEFINITION 2.2. Let A and B be two subsets of F . We write A�c B, if
for each x ∈A and each y ∈B, we have y −x ∈C.

It is equally worth to recall that a subset A of F is said to be directed
upwards if for every a, b in A there exists c∈A such that a �c c and b�c c.
By analogy, directed downwards subsets can be defined.

For a given subset A⊂F , there may, or may not, be a ∈F with the fol-
lowing property :

for every c∈F, a �c c if and only if b�c c for every b∈A,

that is, a �c c if and only if, c is an upper bound for A. Obviously, if a

exists it is unique; it is called the least upper bound of A and denoted by
sup�c

A or simply supA if there is no risk of confusion on the order. In a
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similar way, inf A, whenever it exists, is called the greatest lower bound of
A and it is the element of F such that

for every c∈F, c�c inf A if and only if c�c b for every b∈A.

We shall recall that F is called a lattice whenever sup{a, b} and inf{a, b}
exist for all elements a, b in F . It follows that finite subsets in a lattice have
a least upper bound and a greatest lower bound. Finally, notice that the
class of lattices such that non-empty subsets bounded above and directed
upwards have a least upper bound contains the subclass of complete lat-
tices (also called Dedekind complete lattices).1 We point out here that no
confusion should be done between complete lattices and totally ordered
spaces.

The domain of a function, f : E → F •, is denoted by Dom f and is
defined by

Dom f ={x ∈E |f (x)<c +∞},

and its epigraph by

epi f ={(x, y)∈E ×F |y ∈f (x)+C}. (2.3)

Recall now the following definitions:

DEFINITION 2.3. f is said to be C-convex, if for every α ∈ [0,1] and
x1, x2 ∈E one has

αf (x1)+ (1−α)f (x2)∈f (αx1 + (1−α)x2)+C. (2.4)

DEFINITION 2.4. A mapping f :E→F is said to be C-D.C., if there exist
two C-convex mappings g and h such that:

f (x)=g (x)−h (x) ∀x ∈E.

The pair (g,h) of C-convex maps will be called a C-D.C. decomposition of
f .
We recall now the definitions of lower semicontinuity and sequential lower
semicontinuity of a vector-valued mapping introduced respectively in [19]
and [6].

1Some authors use the terminology of conditionally complete lattices as in [2].
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DEFINITION 2.5. [19] A mapping f :E →F • is said to be lower semicon-
tinuous (l.s.c) at x̄ ∈E, if for any neighborhood V of zero and for any b∈F

satisfying b�c f (x̄), there exists a neighborhood U of x̄ in E such that

f (U)⊂b+V +C ∪{+∞}.

Remark 2.6. Following [19], if f (x̄) ∈ F then Definition 2.5 amounts to
saying that for all neighborhood V of zero (in F ), there exists a neighbor-
hood U of x̄ such that

f (U)⊂f (x̄)+V +C ∪{+∞}. (2.5)

DEFINITION 2.7. [6] A mapping f : E → F • is said to be sequentially
lower semicontinuous (s-l.s.c) at x̄ ∈E, if for any b∈F satisfying b�c f (x̄)

and for any sequence (xn) in E which converges to x̄, there exists a
sequence (bn) (in F ) converging to b and satisfying bn �c f (xn), for every
n∈N.

Remark 2.8. For x̄ ∈ Dom f , Definition 2.7 can be expressed simply as
follows: For each sequence (xn) converging to x̄, there exists a sequence
(bn) converging to f (x̄) such that bn �c f (xn) for all n∈N.

Note that it has been proved in [6] that Definitions 2.5 and 2.7 coincide
whenever E and F are metrizable.

DEFINITION 2.9. F is said to be normal if F has a basis of order-convex
neighborhood of zero of the form V = (V +C)∩ (V −C).

Remark 2.10. It is worth mentioning as well that:

• The sequential upper semicontinuity of f (s-u.s.c for brevity) is defined
by saying that −f is s-l.s.c.

• If (F,C) is normal, one may check that f is sequentially continuous
at x̄ ∈E with f (x̄)∈F , if and only if f is s-l.s.c and s-u.s.c at x̄.

• Whenever E is metrizable and F = R, the s-l.s.c continuity coincides
with the classical lower semicontinuity. In this case, a function is s-l.s.c
at every point of E if and only if its epigraph is closed in E ×F .

• Note that every l.s.c vector-valued mapping has a closed epigraph (see
[4]), but the converse is not true as the following counterexample fur-
nished in [19] shows:
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The mapping h : R→R2 defined by

h (x)=
⎧
⎨

⎩

(0,0) if x =0(
1
|x| ,−1

)
otherwise,

is not not l.s.c at (0,0) while its epigraph (with respect to C =R2
+) is

closed.

We end up these preliminaries by recalling that the lower part of the
Painlevé–Kuratowski set-convergence of a sequence (An) of subsets of F ,
is given by

lim inf
n

An ={y ∈F :y = lim
n

yn, there existsn0 : for all n�n0, yn ∈An}.

The sequence (An)n will be said lower convergent to A⊂F in the sense of
Painlevé–Kuratowski if and only if

A⊂ lim inf
n

An.

3. Adequate Local Lower and Upper Level Sets

In the present section, on the way to our objective, we introduce adequate
notions of local lower and upper “level” sets for vector-valued mappings
defined from E into F •.

DEFINITION 3.1. Let f be an extended-vector-valued mapping, x ∈
Dom f and y ∈F . Denoting by ϑ (x̄) (resp. ϑ (y)) the family of neighbor-
hoods of x (resp. y), we introduce the following “level” sets:

A
f

x̄ :={y ∈F | ∀V ∈ϑ (y) , ∃U ∈ϑ (x̄) , f (U)⊂V +C ∪{+∞}} ; (3.1)

B
f

x̄ :={y ∈F | ∀V ∈ϑ (y) , ∃U ∈ϑ (x̄) , f (U)⊂V −C ∪{+∞}} ; (3.2)

s −A
f

x̄ :={y ∈F | ∀(xn)n → x̄, ∃(bn)n→y, bn �c f (xn) ∀n∈N} ; (3.3)

s −B
f

x̄ :={y ∈F | ∀(xn)n→x̄, ∃(bn)n→y, bn �c f (xn) ∀n∈N} . (3.4)
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Remark 3.2. In order to illustrate these definitions we present the follow-
ing examples:

EXAMPLE 1. Let f be the real-valued function defined by

f (x)=
{

x if x <0
x +1 otherwise.

Note that f is not lower semicontinuous and observe that

Af
x =

{
]−∞, x] if x �0
]−∞, x +1] otherwise.

Remark 3.3. Let us point out that for any extended real-valued func-
tion f, clAf

x = ]−∞, lim inf x→x f (x)]. In Section 7 we present the proof in
details for finite dimensional-valued functions.

EXAMPLE 2. Let H be a separable Hilbert space and let (en)n∈ be a
basis of H . We suppose that the order is defined by the closed convex cone
H+ given by

H+ ={x ∈H | 〈ep, x〉�0, ∀p ∈N}.

Denoting 〈ei, f 〉 by fi , we consider the function f :R−→H defined by
⎧
⎨

⎩
f1 (x)=

{
0 if x <0
1 otherwise

fi (x)=0 if i 
=1.

We observe that f is lower semicontinuous everywhere except at 0, and we
check that2

Af
x =

∞∏

p=1

〈
ep,Af

x

〉
.

Indeed,

〈
ep,Af

x

〉=A
〈ep,f 〉
x .

Then, for p >1, we have

A
〈ep,f 〉
x =A

fp

x = ]−∞,0] .

2as it is done later in Lemma 6.2.
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For p =1, we see that

A〈e1,f 〉
x =Af1

x = ]−∞,0] .

Hence,

Af
x =

∞∏

p=1

〈
ep,Af

x

〉=
∞∏

p=1

]−∞,0]=−H+.

EXAMPLE 3. Consider the mapping f = (f1, f2): R−→R2 defined by
⎧
⎨

⎩
f1(x) =

{
0 if x <0
1 otherwise.

f2(x) = x.

A straightforward calculation shows that clAf
x = ]−∞,0]× ]−∞, x] if x �0

and clAf
x = ]−∞,1]× ]−∞, x] otherwise.

Remark that clAf
x is convex, directed upwards and in addition we have

Af
x =Af

x −R2
+.

In Section 5, we will prove that these properties of this lower “level” set
hold in general.

In the next section, we characterize the semicontinuity of vector-valued
mappings in terms of the above level sets.

4. Characterization of Semicontinuity for Vector-Mappings

We begin with the following proposition which gives the link between the
level sets and the s-l.s.c, l.s.c, s-u.s.c and u.s.c.

PROPOSITION 4.1. Let f be an extended vector map and x̄ ∈ Domf .
Then,

(1) f is s-l.s.c at x̄ if and only if, f (x̄)∈ s −A
f

x̄ ;
(2) f is l.s.c en x̄ if and only if, f (x̄)∈ A

f

x̄ ;
(3) f is s-u.s.c at x̄ if and only if, f (x̄)∈ s −B

f

x̄ ;
(4) f is s.c.s at x̄ if and only if, f (x̄)∈ B

f

x̄ .

Proof. The proof follows from the definitions.

Now, we can characterize the level sets of semicontinuous extended-vec-
tor-valued mappings. First, we establish the equivalence between s-Af

x̄ and
A

f

x̄ once E and F are metrizable.
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PROPOSITION 4.2. Assume that E and F are metrizable. Let f : E →
F •, x̄ ∈Dom f . Then, we have

s −A
f

x̄ = A
f

x̄ and s −B
f

x̄ = B
f

x̄ .

Proof. For the inclusion s −A
f

x̄ ⊆A
f

x̄ , suppose to the contrary that there
is some y ∈ s − A

f

x̄ \Af

x̄ . There exists then a neighborhood V of y and a
sequence (xn)n converging to x̄ such that f (xn) /∈ V + C. Hence, for every
sequence (bn)n converging to y, one has bn �c f (xn) for n sufficiently large.
This contradicts the fact that y ∈ s −A

f

x̄ .
For the converse inclusion, let y ∈ A

f

x̄ and let (xn)n be a sequence con-
verging to x̄. For k =1, one can find n1 >1 such that

f (xn)∈y +B(0,1)+C ∪{+∞}, n�n1. (4.1)

By induction, for k >1 there exists nk � · · ·�n1 such that

f (xn)∈y +B(0,
1
k
)+C ∪{+∞}, n�nk. (4.2)

Now, for n with 0 < n � n1 set bn = f (xn), for n with nk < n � nk+1, k =
1,2, . . . choose bn ∈y +B(0, 1

k
) such that bn �c f (xn) according to (4.1) and

(4.2). Then, (bn)n converges to y and hence y ∈ s −A
f

x̄ .
In a similar way, we show that

s −B
f

x̄ = B
f

x̄ ,

the proof is complete.

Hypothesis: In what follows, we assume that E and F are metrizable and
adopt the notation A

f

x̄ for a lower level set.
Next, we prove the following elementary property.

PROPOSITION 4.3. Let f :E →F • and x̄ ∈Dom f . Then,

(1) A
f

x̄ =A
f

x̄ −C;
(2) B

f

x̄ = B
f

x̄ +C.

Proof. (1) The inclusion A
f

x̄ ⊆ A
f

x̄ − C is clear. For the converse inclu-
sion, let y ∈A

f

x̄ and c ∈C. Let V be a neighborhood of y − c. Then V + c

is a neighborhood of y. Hence there is a neighborhood U of x̄ such that
f (U)⊆V + c+C ∪{+∞}⊆V +C ∪{+∞}. By this y − c∈A

f

x̄ .
(2) The second equality can be established by inverting the order.
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THEOREM 4.4. Let f :E →F • and x̄ ∈Dom f . Then,

(1) f is l.s.c at x̄ ⇐⇒ A
f

x̄ =f (x̄)−C;
(2) f is u.s.c at x̄ ⇐⇒ B

f

x̄ =f (x̄)+C.

Proof. (⇒) Suppose that f is l.s.c at x̄ and y ∈ A
f

x̄ . We can easily see that
(as detailed in Proposition 5.1),

y −f (x̄)∈−C.

Therefore

A
f

x̄ ⊂f (x̄)−C. (4.3)

Since f is l.s.c at x̄, f (x̄)∈ A
f

x̄ , by Proposition 4.3, we have

f (x̄)−C ⊂ A
f

x̄ . (4.4)

We hence deduce, via (4.3) and (4.4), that

f (x̄)−C = A
f

x̄ .

(⇐) Assume that A
f

x̄ =f (x̄)−C. As 0 ∈C,f (x̄)∈ A
f

x̄ . Following Proposi-
tion 4.1, f is lower semicontinuous at x̄.

(2) The second equivalence can be established similarly.

COROLLARY 4.5. Let f : E → F • and x̄ ∈ Dom f . Assume that C is
pointed and (F,C) is normal. Then, the assertions below are equivalent.

(i) f is continuous at x̄;
(ii) A

f

x̄ ∩B
f

x̄ 
=∅.

Proof. (i) ⇒ (ii) is clear. Let us prove that (ii)⇒(i).
Let y ∈A

f

x̄ ∩B
f

x̄ . Then, for each sequence (xn)n that converges to x̄, there
exist two sequences (an)n and (bn)n in F such that

lim
n→+∞ an =y and an �c f (xn) , ∀n∈N,

and

lim
n→+∞ bn =y and f (xn)�c bn, ∀n∈N.

In particular, for the stationary sequence xn =x, for every n∈N, there exists
two sequences

(
a′

n

)
n

and
(
b′

n

)
n

in F such that

lim
n→+∞ a′

n =y and a′
n �c f (x̄) , ∀n∈N,
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and

lim
n→+∞ b′

n =y and f (x̄)�c b′
n, ∀n∈N.

Since C is closed,

f (x̄)−y ∈C ∩ (−C) .

Since C is pointed, then f (x̄)=y ∈A
f

x̄ ∩B
f

x̄ . Following Proposition 4.1, f

is l.s.c and u.s.c at x̄. The normality of (F,C) ensures the continuity of f

at x̄.

5. Properties of Lower and Upper Level Sets

This section is devoted to the study of the behavior of the lower and upper
level sets. We show that they have remarkable properties, both topological
and geometrical. We focus only on the lower level set, because the proper-
ties of the local upper level set can be deduced straightforwardly by simi-
larity.

At first, we provide a bound for A
f

x̄ and B
f

x̄ .

PROPOSITION 5.1. Let f :E →F • and x̄ ∈Dom f . The following assertion
holds:

A
f

x̄ �c {f (x̄)}�c B
f

x̄ .

Proof. Let y ∈ A
f

x̄ and consider the sequence (xn)n given by xn = x̄ for
every n∈N. There exists a sequence (bn)n in F such that

lim
n→+∞ bn =y and bn �c f (x̄) , ∀n∈N.

Since C is closed, y �c f (x̄). Hence, A
f

x̄ �c {f (x)}.
In the same manner, we show that {f (x̄)}�c B

f

x̄ by inverting the order.

The useful property of directness is also verified. Precisely, we have the
following:

PROPOSITION 5.2. Let f : E → F • and x̄ ∈ Dom f . Suppose that F is a
Banach lattice. Then, A

f

x̄ is directed upwards and B
f

x̄ is directed downwards.
Proof. Take y1, y2 ∈ A

f

x̄ and (xn)n a sequence in E converging to x̄. Then
there exist two sequences (bn)n and

(
b

′
n

)
n

in F such that

lim
n→+∞ bn =y1 and bn �c f (xn) , ∀n∈N (5.1)
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and

lim
n→+∞ b

′
n =y2 and b

′
n �c f (xn) , ∀n∈N. (5.2)

As the map :

sup : F ×F →F

(x, y) �→ sup (x, y)

is uniformly continuous (see [23] Proposition 5.2 p. 83), taking into consid-
eration (5.1) and (5.2), we obtain

lim
n→+∞ sup(bn, b

′
n)= sup(y1, y2) and sup(bn, b

′
n)�c f (xn), ∀n∈N.

It follows that sup (y1, y2)∈ A
f

x̄ .

PROPOSITION 5.3. For each ξ ∈Y ∗, ξ(supA
f

x̄ )= sup ξ(A
f

x̄ ).
Proof. Let ξ ∈Y ∗. A

f

x̄ being directed upwards, thanks to Proposition 4.1
of [2], it suffices to check that ξ is continuous with respect to the Scott
topology. Since R is continuous (in the of sense of [2] see example 1.1 in
[2] for further details) and ξ is lower semicontinuous continuous (because
continuous), it follows from [Theorem 4.2, [2]] that ξ is Scott-continuous.
The proof is then complete.

PROPOSITION 5.4. Let f : E →F • and x̄ ∈ Dom f . Then A
f

x̄ and B
f

x̄ are
convex.

Proof. Take y1, y2 ∈ A
f

x̄ , λ∈ [0,1] and (xn)n a sequence in E that converges
to x̄. Then there exist two sequences

(
b

′
n

)
n

and
(
b

′′
n

)
n

in F such that

lim
n→+∞ b

′
n =y1 and b

′
n �c f (xn) , ∀n∈N,

and

lim
n→+∞ b

′′
n =y2 and b

′′
n �c f (xn) , ∀n∈N.

Take bn =λb
′
n + (1−λ)b

′′
n. On one hand we have

lim
n→+∞ bn =λy1 + (1−λ)y2. (5.3)

On the other hand,

f (xn)−bn =f (xn)−λb
′
n − (1−λ)b

′′
n

=λ
(
f (xn)−b

′
n

)
+ (1−λ)

(
f (xn)−b

′′
n

)
.
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As f (xn)−b
′
n ∈C ∪{+∞} and f (xn)−b

′′
n ∈C ∪{+∞},

bn �c f (xn), ∀n∈N (5.4)

we deduce from (5.3) and (5.4) that

λy1 + (1−λ)y2 ∈ A
f

x̄ .

Similarly, we can prove that B
f

x̄ is convex.

6. The Objective of the Paper

The study of the l.s.c regularization of vector-valued mappings has been
initiated by Théra for maps with values in complete (lattice) Daniell spaces.
Our ambition here is to define a lower semiconductivity for of a vector-val-
ued mapping f :E →F •, when F is a complete Banach lattice.3

Assuming, throughout this section, that for every x ∈ Dom f,A
f

x 
= ∅, let
us agree to introduce the following mappings:

If (x) := sup A
f

x .

Remark 6.1. F being a complete lattice, A
f

x̄ is upper bounded. It follows
that If is well defined i.e., sup A

f

x exists.

We first begin with the case where F =H is a separable complete Hilbert
lattice space. Let (en)n∈N be an orthonormal basis of H . The order on H

is defined by the closed convex cone given by

H+ ={x ∈H | 〈ep, x〉�0, ∀p ∈N}.
Clearly, the polar cone of H+ is equal to H+, i.e. , H ∗

+ =H+.
In order to conclude the semicontinuity of If in this first case with the

use of semicontinuity of the usual scalar lower limit, we need two ingredi-
ents.

LEMMA 6.2. Let f : E → H • and x̄ ∈ Dom f . Assume that A
f

x̄ 
= ∅. Then,
for each p ∈N, one has

〈
ep,A

f

x̄

〉
=A

〈ep,f 〉
x̄ ,

where
〈
ep,A

f

x̄

〉
:=

{〈
ep, y

〉 |y ∈A
f

x̄

}
.

3We can present the l.s.c regularization with quite different arguments in the case where F is
a reflexive Banach space ordered by a normal cone. Here we restrict ourselves to the setting of
complete Banach lattices.



296 M. AIT MANSOUR ET AL.

Proof. Let p ∈ N, y ∈ A
f

x̄ and (xn)n be a sequence in E converging to x̄,
then there is a sequence (bn)n in H such that

lim
n→+∞bn =y and bn �f (xn) , ∀n∈N,

which implies that

lim
n→+∞

〈
ep, bn

〉= 〈
ep, y

〉
and

〈
ep, bn

〉
�

〈
ep, f (xn)

〉
, ∀n∈N

and therefore
〈
ep, y

〉∈A
〈ep,f 〉
x̄ . It follows that

〈
ep,A

f

x̄

〉
⊂A

〈ep,f 〉
x̄ for each p ∈N. (6.1)

Let us show the converse inclusion: A
〈ep,f 〉
x̄ ⊂〈ep,A

f

x̄ 〉 for each p ∈N. So, let

(xn)n be a sequence in E converging to x̄, p ∈ N and y ∈A
〈ep,f 〉
x̄ . Consider

(yn)n in R such that

lim
n→+∞yn =y and yn �

〈
ep, f (xn)

〉
, ∀n∈N. (6.2)

Let z0 ∈A
f

x̄ be fixed and take z :=z0 + (
y − z

p

0

)
ep, where z

p

0 = 〈
z0, ep

〉
. Let us

prove that z∈A
f

x̄ . As z0 ∈A
f

x̄ , there exists (zn)n such that

lim
n→+∞zn = z0 and zn �H+ f (xn) , ∀n∈N. (6.3)

Set z′
n = zn + (

yn − z
p
n

)
ep with z

p
n = 〈

zn, ep

〉
and observe that limn→+∞z′

n = z.
We shall check that

z′
n �H+ f (xn) , ∀n∈N. (6.4)

Let q ∈N. Remarking that 〈eq, f (xn)− z′
n〉= 〈eq, f (xn)− zn〉, it follows from

(6.3) that 〈eq, f (xn) − z′
n〉 � 0. Now for q = p, a simple computation shows

that 〈eq, f (xn) − z′
n〉 = 〈ep, f (xn) − yn〉, then by (6.2) we have 〈eq, f (xn) −

z′
n〉 � 0. Hence, (6.4) is satisfied and therefore z ∈ A

f

x̄ . As
〈
ep, z

〉 = y, we
deduce that

A
〈ep,f 〉
x̄ ⊂〈ep,A

f

x̄ 〉. (6.5)

Using (6.1) and (6.5) we obtain A
〈ep,f 〉
x̄ =〈ep,A

f

x̄ 〉 for each p ∈N.

LEMMA 6.3. [19] Let Y =∏
i Yi be the space product of a family of ordered

vector spaces Yi . Then, a map f :E →Y is l.s.c, if and only if, its projections
fi =pi ◦f are l.s.c.
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Here, pi denotes the projection from Y into Yi .

THEOREM 6.4. Let f :E →H • and let x ∈Dom f . Then, If is l.s.c at x.
Proof. Since A

f

x is directed, one can easily check that for all p � 0, we
have

〈ep, If (x)〉=〈ep, sup A
f

x̄ 〉= sup〈ep,A
f

x̄ 〉.
Then, using Lemma 6.2 and Remark 3.3, we deduce that

〈ep, If (x)〉= sup A
fp

x̄ = lim inf
x→x

fp(x),

where fp =〈ep, f 〉. Clearly, 〈ep, If 〉 is l.s.c for each p, thus f is l.s.c.

Next, we present the more general case where F is a complete Banach
lattice in which we do not make recourse to semicontinuity of the scalar
lower limit.

THEOREM 6.5. Suppose F is a complete Banach lattice and A
f

x 
=∅ for all
x ∈Dom f . Then, If is lower semicontinuous at every x ∈Dom f , and there-
fore If defines a l.s.c regularization of f .

We prove first some technical Lemmata that will be useful for proving
the main result.

LEMMA 6.6. For every convex cone C in F , we have

(F \C)−C =F \C. (6.6)

Proof. The proof is standard and based on the convexity of C.

LEMMA 6.7. We have If (x̄)∈ cl A
f

x̄ .
Proof. It suffices to show that for each d ∈ Int C, one has If (x̄)−d ∈A

f

x̄ .
Indeed, suppose that If (x̄)−d /∈A

f

x̄ for some d ∈ Int C. Then we may sepa-
rate the point If (x̄)−d and the convex set A

f

x̄ =A
f

x̄ −C, i.e., there is some
y∗ ∈F ∗{0} such that

〈y∗, If (x̄)−d〉� 〈y∗, z〉, ∀z∈A
f

x̄ −C.

It easily follows that y∗ ∈C∗ and

〈y∗, If (x̄)〉� 〈y∗, d〉+〈y∗, z〉, ∀z∈A
f

x̄ .
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Since 〈y∗, d〉>0, the above inequality leads to a contradiction with Prop-
osition 5.3.

As a consequence of the previous Lemma we derive the following tech-
nical Lemma.

LEMMA 6.8. For each y ∈A
f

x such that y <c If (x̄), there exists a sequence
(βk)k in clAf

x such that

βk → If (x) as n goes to +∞ and y <c βk, for all k. (6.7)

Now, for x ∈Dom f , we introduce the following sets

Ef (x) :={y ∈A
f

x | y <c If (x)} (6.8)

and

Hf (x) :={y ∈ clAf

x | y �c If (x)} (6.9)

and establish the following:

LEMMA 6.9. We have clEf (x)=Hf (x).
Proof. Let y ∈ cl (Ef (x)). There exists a sequence (yk)k converging to y

such that yk ∈Ef (x), for all k. Clearly, y ∈ clAf

x and

If (x)−yk ∈ Int C ⊂C ∀k. (6.10)

Passing to the limit in (6.10) whenever k goes to +∞, we obtain that

If (x)−y ∈C,

or equivalently y ∈Hf (x).
Conversely, let y ∈ Hf (x). Then, y ∈ clAf

x and If (x) − y ∈ C. Therefore,
there exists (yk)k in A

f

x such that yk →y. Consider now (νk)k in Int C such
that νk → 0. Take yk := yk − νk and observe that (yk)k also converges to y.
On the other hand, Proposition 4.3 implies that

yk ∈A
f

x − Int C ⊂A
f

x −C =A
f

x . (6.11)

Remark also that

If (x)−yk = (If (x)−yk)+νk

∈ C + Int C = Int C.

Thus, y ∈ clEf (x). The proof of the Lemma is therefore established.
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Remark 6.10. Remark that A
f

x ⊂ clEf (x)=Hf (x)= clAf

x .

The following result will play a key role to derive the lower semicontinu-
ity of the lower limit.

LEMMA 6.11. For every sequence (xk)k converging to x, the sequence
(A

f
xk

)k is lower convergent to A
f

x in the sense of Painlevé–Kuratowski.
Proof. We have to prove that each neighborhood of any point of the set

A
f

x̄ meets the sets A
f
xk

for k sufficiently large. Suppose to the contrary that
there are some point y ∈ A

f

x̄ and a neighborhood V of the origin such
that (y +V )∩A

f
xk

=∅ for all k�1. In particular, there is some d ∈Int C such
that (y −d +C)∩A

f

x̄ =∅ for all k�1. Since y ∈A
f

x̄ , there is (yk)k converging
to y such that yk �c f (xk). We may assume that yk ∈ y − 1

2d +C for k � 1,
which implies also

f (xk)∈y − 1
2
d +C, ∀k �1.

Moreover, as y −d /∈A
f
xk

, for every k, there is a sequence (xk,n)n converging
to xk such that y − n−1

n
d �c f (xk,n). Choose a subsequence (xk,nk

)k converg-
ing to x̄. Since y ∈A

f

x̄ , there is a sequence (yk,nk
)k converging to y such that

yk,nk
�c f (xk,nk

). One may assume that yn,nk
∈y − 1

2d +C for all k >1. Then
for all these k, y − 1

2d �c f (xk,nk
), which is in contradiction with y − nk−1

nk
d �c

f (xk,nk
) when k is sufficiently large.

We are now ready to establish the main result of the paper.
Proof. of theorem 6.5. Let x ∈ Dom f and let (xn)n be a sequence con-

verging to x. Thanks to Lemma 6.7, there exists a sequence (yk)k con-
verging to If (x) such that yk ∈A

f

x . From Lemma 6.11, it follows that yk ∈
lim inf

n
Af

xn
. Select yn

k ∈A
f
xn

such that (yn
k )n converges to yk as n goes to +∞.

Following the beginning of the proof of Lemma 6.11 we can assume that
(yn

k )n converges uniformly in k to yk. Indeed, we can consider yn
k =yk − νn

with νn ∈ Int C such that

lim
n→+∞ νn =0.

Clearly,

yn
k �c sup Af

xn
= If (xn)
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This being true for all k, let k(n) be a map such that k(n)→+∞. Take bn =
yn

k(n); the (bn)n sequence converges to If (x) (thanks to the uniform conver-
gence of (yn

k )n to yk ) and satisfies

bn �c If (xn).

The proof is complete.

Remark 6.12. From now on, we will use the following notation

v − lim inf
x→x

f (x) := If (x)= sup A
f

x

COROLLARY 6.13. The assertions below are equivalent

• f is lower semicontinuous at x ∈Dom f ;
• f (x)�c v − lim inf

x→x
f (x).

Proof. By Proposition 4.1, f is l.s.c at x if, and only if f (x)∈A
f

x . Then,
if f is l.s.c at x, as v − lim inf x→x f (x) is the least upper bound of A

f

x , it
follows that

f (x)�c v − lim inf
x→x

f (x). (6.12)

Conversely, suppose that (6.12) holds. We know that f (x) is an upper
bound of A

f

x , a fortiori

v − lim inf
x→x

f (x)�c f (x).

Hence, as the cone C is pointed, we derive

v − lim inf
x→x

f (x)=f (x).

Therefore, thanks to the characterization of semicontinuity of [6] and our
main result, we deduce that f is necessarily l.s.c at x. Indeed, having in
mind

If (z) :=v − lim inf
x→z

f (x)�c f (z), ∀z∈E,

for any sequence (xn)n such that xn → x, by Theorem 6.5, there exists a
sequence (bn)n converging to If (x)=f (x) such that

bn �c If (xn)�c f (xn) ∀n.

The proof is established.
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Remark 6.14. Similarly, we can define the upper semicontinuous regular-
ization of f by

v − lim sup
x→x

f (x) := inf B
f

x .

7. Compatibility with the Standard Cases

Now, we derive from the main result a more flexible proof for the well
known result that says: for every real-valued function, the lower limit is
lower semicontinuous. We consider here, more generally, finite dimensional-
valued mappings.

Consider F =Rp, f =(
f1, f2, . . . , fp

)
and x̄ ∈Dom f . Note that the order

in this case goes back to the usual order of R, generated by the cone C :=
Rp

+ and will be simply denoted by �.
We claim that

clAf

x̄ =
p∏

i=1

]−∞, lim inf
x→x̄

fi(x)],

and

clBf

x̄ =
p∏

i=1

[lim sup
x→x̄

fi(x),+∞[.

In fact, consider first the case p =1. Let f :E →R, x̄ ∈Dom f, y ∈A
f

x̄ and
(xn)n be a sequence converging to x̄. There exists (bn)n such that

lim
n→+∞bn =y and bn �f (xn) , ∀n∈N.

This yields y � lim inf
x→x̄

f (x) and thus

y ∈
]
−∞, lim inf

x→x̄
f (x)

]
,

whence, clAf

x̄ ⊂]−∞, lim inf
x→x̄

f (x)].

Thanks to Proposition 4.3, A
f

x̄ is an interval of R containing −∞, then
to prove the second inclusion, it suffices to show that

lim inf
n→+∞ f (xn)∈ clAf

x̄ .
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To this end, let ε >0 and (xn)n be a sequence in E converging to x̄; there
exists N ∈N such that

lim inf
n→+∞ f (xn)− ε �f (xn) for each n�N.

Set

bn :=
{

−∞ if n�N

lim inf
n→+∞ f (xn)− ε if n>N.

We have limn→+∞ bn = lim infn→+∞ f (xn)−ε and bn �f (xn) for every n∈
N. This leads to

lim inf
n→+∞ f (xn)− ε ∈A

f

x̄

for all ε >0, accordingly

]−∞, lim inf
x→x̄

f (x)]⊂ clAf

x̄ .

Thus,

]−∞, lim inf
x→x̄

f (x)]= clAf

x̄ .

Let us show this inequality for p>1. Let f be a mapping defined from E

into Rp where f = (
f1, f2, . . . , fp

)
. We observe that

A
f

x̄ ={
y ∈Rp | ∀(xn)→x̄, ∃(bn)→y |bn �f (xn) ∀n∈N

}

=
{(

y1, . . . , yp

)∈Rp | ∀(xn)→x̄, ∃(bi
n) →

n→+∞yi |bi
n �fi (xn) ∀n∈N

}
,

for i =1, 2, . . . , p. This yields

A
f

x̄ =
{(

y1, . . . , yp

)∈Rp |yi ∈A
fi

x̄ for i =1, 2, . . . , p
}

=
p∏

i=1

A
fi

x̄ .

This product being finite, it follows that

clAf

x̄ = cl
p∏

i=1

A
fi

x̄

=
p∏

i=1

]−∞, lim inf
x→x̄

fi(x)].

establishing the proof.
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Now, we recapture the classical result for finite dimensional valued-func-
tions:

THEOREM 7.1. The lower limit for finite dimensional valued-functions is
lower semicontinuous.

Proof. Take F = Rp. It suffices to take C = Rp
+ and replace �c by the

usual order � in the proof of the main result.

Remark 7.2. Notice here that our proof of this classical result is indepen-
dent of the closure of the epigraph.

8. Extension of Usual Operations

To extend the usual operations on the lower and upper limits to the vector
case, we first establish the relation between the lower level set of the sum
of two maps and the sum of their lower level sets.

PROPOSITION 8.1. Let f and h be two vector-valued mappings from E

into F • and x̄ ∈Dom f ∩Dom h. Then the following inclusions hold:

(1) A
f

x̄ +Ah
x̄ ⊂A

f +h

x̄ ;
(2) B

f

x̄ +Bh
x̄ ⊂B

f +h

x̄ .
(3) If moreover, f or h is continuous at x̄, the inclusions in (1) and (2)

become equalities.

Proof. (1) Let y ∈ A
f

x̄ + Ah
x̄ , there exist y1 ∈ A

f

x̄ and y2 ∈ Ah
x̄ such that y =

y1 +y2. Let (xn)n be a sequence converging to x̄. As y1 ∈ A
f

x̄ and y2 ∈ Ah
x̄ ,

there exist
(
b

′
n

)
n

and
(
b

′′
n

)
n

in F such that

lim
n→+∞b

′
n =y1 and b

′
n �f (xn) , ∀n∈N

and

lim
n→+∞b

′′
n =y2 and b

′′
n �h (xn) , ∀n∈N .

Set bn =b
′
n +b

′′
n, we have limn→+∞ bn =y1 +y2 =y, and

bn =b
′
n +b

′′
n �f (xn)+h (xn) , ∀n∈N.

It follows that y ∈A
f +h

x̄ .
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(2) The second inclusion can be established as in (1).
(3) Suppose now that f is continuous at x̄ and consider (xn)n converging

to x̄ and y ∈ A
f +h

x̄ . There exists a sequence (bn)n in F such that

lim
n→+∞bn =y and bn �f (xn)+h (xn) , ∀n∈N.

This yields

bn −f (xn)�h (xn) , ∀n∈N. (8.1)

Let us take

an =
{

bn −f (xn) if xn ∈Dom f

h (xn) otherwise.

f being continuous at x̄, it follows for n large enough, that xn ∈ Dom f ,
and therefore

lim
n→+∞an =y −f (x̄) . (8.2)

Hence, we deduce from (8.1) and (8.2) that y −f (x̄)∈ Ah
x̄ . Thus, y ∈f (x̄)+

Ah
x̄ .
As f is continuous at x̄, f is s-s.c.i at x̄. It follows from Proposition 4.1

that f (x̄)∈ A
f

x̄ , then

y ∈A
f

x̄ +Ah
x̄.

The second inclusion follows analogously.

THEOREM 8.2. Let f and h be two vector-valued mappings from E into
F • and x̄ ∈Dom f ∩Dom h . The following assertions hold.

(1) v − lim inf y→x̄ f (y) + v − lim inf y→x̄ h (y) �c v − lim inf y→x̄

(f +h) (y) ;
(2) v − lim supy→x̄ (f +h) (y) �c v − lim supy→x̄ f (y) + v − lim supy→x̄

h (y).
(3) If moreover f or h is continuous at x̄, the inequalities in (1) and (2)

become equalities.

Proof. (1) By virtue of Proposition 8.1, we have A
f

x̄ +Ah
x̄ ⊂A

f +h

x̄ . Let z∈
A

f

x̄ fixed; then z+Ah
x̄ ⊂A

f +h

x̄ , and therefore

sup
(
z+Ah

x̄

)
� supA

f +h

x̄ .
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Hence,

z+ v − lim inf
y→x̄

h (y)�v − lim inf
y→x̄

(f +h) (y) ,

for all z∈A
f

x̄ . Then

sup
z∈A

f

x̄

(
z+ v − lim inf

y→x̄
h(y)

)
�v − lim inf

y→x̄
(f +h)(y),

which leads to

sup
z∈A

f

x̄

z+ v − lim inf
y→x̄

h(y)�v − lim inf
y→x̄

(f +h)(y).

Accordingly,

v − lim inf
y→x̄

f (y)+v − lim inf
y→x̄

h(y)�v − lim inf
y→x̄

(f +h)(y).

(2) The second inequality can be done similarly.
(3) Assume that f is continuous at x̄, using Proposition 8.1, we obtain

A
f

x̄ +Ah
x̄ =A

f +h

x̄ .

Thanks to Theorem 4.4, we deduce that

f (x̄)−C +Ah
x̄ = A

f +h

x̄ .

Proposition 4.3 implies that

Ah
x̄ −C =Ah

x̄,

which allows to say that

f (x̄)+ Ah
x̄ = A

f +h

x̄ ,

whence

sup
(
A

f +h

x̄

)
= sup

(
f (x̄)+ Ah

x̄

)

=f (x̄)+ sup
(
Ah

x̄

)
.

Then,

f (x)+v − lim inf
y→x̄

h (y)=v − lim inf
y→x̄

(f +h) (y) .



306 M. AIT MANSOUR ET AL.

Since f is continuous, Theorem 4.11 implies that A
f

x̄ =f (x̄)−C, and there-
fore supA

f

x̄ =f (x). We conclude that

v − lim inf
y→x

f (y)+v − lim inf
y→x

h (y)=v − lim inf
y→x

(f +h) (y) . �

9. Application to Vector-Valued D.C. Mappings

In this section, H is as in Section 6. We shall apply our main result to
show that every vector-valued D.C. mapping finite and continuous defined
on a Banach space with values in H admits a continuous D.C. decompo-
sition.

We first prove that each finite and continuous vector-valued D.C. map-
ping admits a lower semicontinuous D.C. decomposition.

Let � be a convex open of E. Recalling, for a mapping from � into H ,
the notation Iϕ (x) := sup

(
A

ϕ
x

)
, we state the following:

PROPOSITION 9.1. Let f :�→H be finite and continuous D.C. vector-val-
ued mapping on �. If (g, h) is a D.C. decomposition of f on �, then

(
Ig, Ih

)

is a D.C. decomposition of f on �.
Proof. Let g be an H+-convex. At first, we claim that Ig is H+-convex.

In fact, for x̄ ∈Dom g, as A
g

x̄ is directed upwards, it follows that

〈
ep, Ig (x̄)

〉= 〈
ep, supA

g

x̄

〉= sup
〈
ep,A

g

x̄

〉
, ∀p ∈N.

According to Lemma 6.2, we have

sup
〈
ep,A

g

x̄

〉= supA
〈ep,g〉
x̄ = lim inf

x→x̄

〈
ep, g (x)

〉
, ∀p ∈N.

Therefore,

epi
(〈
ep, Ig

〉)= epi
〈
ep, g

〉
, ∀p ∈N.

Since g is H+-convex, for each p ∈ N,
〈
ep, g

〉
is convex. This yields

〈
ep, Ig

〉

is convex for each p ∈N, i.e., Ig is H+-convex.
Now, let (g, h) be a D.C. decomposition of f . Let us show that

(
Ig, Ih

)
is

a D.C. decomposition of f on �. For this, let x̄ ∈�, we have

A
f +h

x̄ =A
g

x̄.

As f is continuous at x̄, by Proposition 8.1, we obtain

A
f

x̄ +Ah
x̄ =A

g

x̄.
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On the other hand, Theorem 4.4 leads to

f (x̄)−C +Ah
x̄ = A

g

x̄,

and from Proposition 4.3 we have

f (x̄)+ Ah
x̄ = A

g

x̄.

Therefore

sup
(
A

g

x̄

)= sup
(
f (x̄)+ Ah

x̄

)

=f (x̄)+ sup
(
Ah

x̄

)
.

Hence, f (x̄)+ Ih (x̄)= Ig (x̄) for every x̄ ∈�. The proof is complete.

In the scalar case it has been shown [8] that every real D.C. continuous
function admits a continuous D.C. decomposition. Here, we provide a gen-
eralization for continuous vector-valued maps from a Banach space into a
separable Hilbert space.

THEOREM 9.2. Every finite, continuous and H+-D.C. mapping on a convex
and open subset � of E into a separable Hilbert space ordered by H+ admits
a continuous H+-D.C. decomposition on �.

Proof. Let (g, h) be an H+-D.C. decomposition of f . Fix a point x ∈�.
According to Proposition 9.1, (Ig, Ih) is a lower semicontinous H+-D.C.
decomposition on f on �. On the other hand, f is continuous at x. Then,

x ∈ Int (Dom f )= Int (Dom Ig ∩Dom Ih)⊂ [Dom Ig ∩ Int (Dom Ih)].

The map Ih being H+-convex, lower semicontinuous and proper on � and

x ∈�∩ Int (Dom h),

it follows, for each p, that Ihp
:H →R is convex, lower semicontinuous and

proper. Hence, as R is normal, by Theorem 10.1 below we can conclude
that Ihp

is continuous at x, for each p and then so is Ih. As g(y)=f (y)+
h(y) for each y ∈�, it results that Ig is continuous at x. The proof is com-
plete.
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Appendix A

THEOREM 10.1. [24] Let f :E→F • be a vector mapping. Suppose that F

is normal and f is C-convex, s-l.s.c and proper. If Int (Dom f ) is nonempty,
then f is continuous on Int (Dom f ).
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